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ABSTRACT: Nuclear magnetic resonance (NMR) stud-
ies of larger proteins are hampered by difficulties in
assigning NMR resonances. Human intervention is
typically required to identify NMR signals in 3D spectra,
and subsequent procedures depend on the accuracy of this
so-called peak picking. We present a method that provides
sequential connectivities through correlation maps con-
structed with covariance NMR, bypassing the need for
preliminary peak picking. We introduce two novel
techniques to minimize false correlations and merge the
information from all original 3D spectra. First, we take
spectral derivatives prior to performing covariance to
emphasize coincident peak maxima. Second, we multiply
covariance maps calculated with different 3D spectra to
destroy erroneous sequential correlations. The maps are
easy to use and can readily be generated from conventional
triple-resonance experiments. Advantages of the method
are demonstrated on a 37 kDa nonribosomal peptide
synthetase domain subject to spectral overlap.

Nuclear magnetic resonance (NMR) is a primary tool for
structural, dynamic, kinetic, and thermodynamic studies

of proteins. However, to harness the full potential of the
method, resonances in NMR spectra must be assigned. This
task is hindered by frequency degeneracies and signal overlap,
as occur in large proteins, disordered proteins, or in some α-
helical proteins. This limitation is due in large part to traditional
sequential assignment procedures, which require parallel
analysis of multiple 3D spectra, early human intervention to
identify signals (peak picking), and consequently, constant
scrutiny. HN correlation maps are the principal tools in NMR
studies of proteins, as each (H,N) correlation reports on an
individual amino acid in the protein. Assignment of NMR
resonances relies on identifying (H,N) correlations that belong
to sequential residues. Two distinct types of 3D spectra convey
this information. In the first type, an additional dimension
encodes carbon chemical shifts of both the same and the
preceding residue (Intra-3D). The second type reports only
carbon chemical shifts of preceding residues (Seq-3D). The
assignment procedure consists of identifying correlations (H(i
+1),N(i+1),C(i)) for residue i+1 in the Seq-3D that feature
carbon shifts matching that of a correlation (H(i),N(i),C(i))
found in the Intra-3D. This process is performed using Cα

(with HNCA for Intra-3D and HN(CO)CA for Seq-3D), CO
(HN(CA)CO and HNCO), and when possible, Cβ (HN(CA)-

CB and HN(COCA)CB) chemical shifts. The procedure
comprises a series of steps. First, (H,N,C) correlations are
identified by peak picking. Next, H/C (or N/C) strips are
generated for each peak in each spectrum. The strip of a target
residue is selected in Intra-3D, and a software package sorts all
strips of Seq-3D according to the difference in carbon
frequencies as determined by peak picking (strip matching).
The procedure requires simultaneous analysis of different
carbons (Cα, CO, and Cβ) to identify true sequential residues
and eliminate accidental degeneracies in carbon frequencies.
Clearly, the procedure relies on the accuracy of peak picking,
which greatly deteriorates in the presence of frequency
degeneracies. Unpicked correlations will not be represented
during strip matching. Carbon frequencies of different spectra
can be mispaired with (H,N) correlations that overlap; for
example, the Cα of residue i could be paired with the CO of
residue j. Strip matching will either be unsuccessful or, worse,
erroneous. To overcome the limitations of preliminary peak
picking, we have designed spectral manipulations that replace
this convoluted assignment procedure with a simple inspection
of four 3D correlation maps. Each map reports on the
combined sequential information contained within all pairs of
Intra-3D and Seq-3D spectra. The four correlation maps
provide correlations of the form (H(i),N(i),H(i+1)), (H(i),N-
(i),N(i+1)), (H(i),N(i),H(i−1)), and (H(i),N(i),N(i−1)) and
permit direct identification of sequential residues in (H,N)
correlation maps. The method employs covariance,1−9 albeit
with spectra suitably modified to minimize artifacts. Covariance
and related methods were suggested as tools to help protein
assignment by creating novel correlations,10−13 but artifacts
have limited applications to small proteins where such artifacts
can be identified. Another elegant solution was tailored to
sequential assignment,14 but it required peak picking and is
hence vulnerable to its associated limitations. Overall,
covariance methods have not been widely adopted for
resonance assignment. Here, sequential correlation maps with
minimal artifacts are obtained by (i) taking a spectral derivative
prior to covariance between pairs of Intra and Seq spectra and
(ii) multiplying the resulting covariance correlation maps to
combine the information provided separately by different
carbon dimensions into a single spectrum. The advantages of
using our covariance sequential correlation maps (COSCOMs)
are illustrated with the 37 kDa EA domain of the nonribosomal
peptide synthetase protein HMWP2.
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Covariance NMR can be used to provide a spectral
representation of the sequential assignment procedure;
however, preliminary treatment of the original spectra is
needed to minimize artifacts. To identify and overcome
shortfalls of covariance NMR in the presence of near
degenerate frequencies, we first reformulate the sequential
assignment procedure in a context that over-represents overlap:
“Amongst all (H,Cα) correlations in HN(CO)CA, find the one
that possesses a Cα frequency matching the observed Cα in
HNCA for an (H,N) correlation” and likewise for all pairs of
spectra. The mathematical formulation of this procedure
consists of calculating the covariance matrix between the H/
C projection of HN(CO)CA, referred to as 2D-H(NCO)CA,
and each H/C plane of HNCA (for all nitrogen indices). Using
the formalism of Brüschweiler and co-workers,6,7,15 the
following 3D array can be constructed:
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The symbol “∼” indicates that the means along the carbon
dimensions have been subtracted from each data point in all
spectra.8 Indices a and c represent the HNCA and 2D-
H(NCO)CA 1H dimensions, respectively; b is the index along
the HNCA 15N dimension, and d is the common index along
the 13C dimensions of both spectra (each with D points). The
resultant 3D spectrum, HNHsca, correlates (H,N) correlations
of HNCA with sequential Hs resonances of 2D-H(NCO)CA.
HNHsca provides correlations (H(i),N(i),H(i+1)) and is an
array of covariance matrices HHs dispersed along a nitrogen
dimension. Unfortunately, false correlations would appear in
such a correlation map. To identify the origin of these artifacts
and to design a solution, we reformulate the mathematics of
covariance NMR into two distinct steps: the element-wise
product of two Cα vectors and subsequent summation over the
elements of the resulting vector. First we define a vector

⃗ = ⎯→ ⊙ ⎯→
−v d ca d ca d( ) ( ) ( )a c a, 1c (2)

where ⎯→caa and
⎯→ca−1c are vectors representing 1D Cα traces at 1H

frequencies defined by the index a in HNCA and c in 2D-
H(NCO)CA, respectively. Here ⊙ denotes the element-wise
product, and the symbol “∼” has been omitted for clarity. Each
point (a,c) in the plane HHs is proportional to the sum of the
elements of the vector va⃗,c:

∑=
−

⃗
=

a c
D

v dHH ( , )
1

1
( )

d

D

a cs
1

,
(3)

By observing the individual Cα vectors and their associated
element-wise products v ⃗ prior to summation, we can discern
the origin of artifacts in HHs that have plagued related
applications of covariance NMR thus far.
Figure 1 uses simulated data to demonstrate the source of

artifacts in covariance NMR spectra. Figure 1a,b displays the
same vector ⎯→caa at an index H(i) = a in 1H of HNCA. Figure 1c

displays a vector ⎯→*
*−ca 1c
that contains the true sequential peak

at index H(i+1) = c* in 2D-H(NCO)CA, while Figure 1d

displays ⎯→
−ca
X
1c

X containing a nearly degenerate Cα peak at index

H(i+1) = cX. The element-wise products of ⎯→caa with ⎯→*
*−ca 1c

(v*⃗) and ⎯→caa with ⎯→
−ca
X
1c

X (v ⃗X) are shown in Figure 1e and f,
respectively. Summing the vectors v*⃗ and v ⃗X provides the
amplitudes of HHs at indices (a,c*) and (a,cX) in Figure 1m.
We can see a false correlation resulting from partial overlap in
the Cα dimension. This artifact can be reduced by taking the
derivative along the Cα dimensions prior to covariance (Figure
1g−j). In this case, v ⃗(′)* now contains only positive elements
(Figure 1k), while v ⃗(′)X contains both positive and negative
elements due to the mismatched inflection points in ⎯→caa′ and
⎯→ca−1′XX (Figure 1l). Summing v ⃗(′)* results in a positive correlation
at index (a,c*) in Figure 1n, whereas the sum of v ⃗(′)X gives zero
amplitude at index (a,cX). Here, the degree of Cα frequency
degeneracy was chosen to completely suppress artifacts when
using spectral derivatives. Stronger degeneracy would result in
positive yet reduced artifacts, while weaker degeneracy would
create negative artifacts that can safely be ignored.
Figures 2 and 3 illustrate experimentally the effectiveness of

artifact suppression in covariance matrices when using
derivatives of original spectra. Figure 2 shows ⎯→ca and ⎯→ca−1
vectors as well as their element-wise products v,⃗ and Figure 3a,b
shows traces from the covariance matrix HHs. Although the
vector ⎯→ca shown in Figure 2a should only correlate with ⎯→ca−1*
(Figure 2b), it also correlates, among others, with ⎯→ca−1

X (Figure
2c). Both vectors v*⃗ and v ⃗X (Figure 2d,e) have only positive
elements that, after summation, give rise to the signals labeled *
and X in Figure 3a. Results are improved if the derivatives of
the vectors ⎯→ca and ⎯→ca−1 are used for covariance analysis (Figure
2f−h). After element-wise multiplication (Figure 2i,j) and
summation, the amplitude of the artifact is either reduced or
becomes negative in the covariance matrix (Figure 3b, signal
labeled X). Thus, true sequential correlations can be
distinguished to a large extent from contributions of residues
with carbons of nearly identical frequencies.
A single COSCOM conveys information obtained with four

separate spectra. The traditional sequential assignment
procedure requires that Cα and CO strips, for example, be
analyzed in parallel to distinguish accidental frequency
degeneracies from true sequential correlations. The COSCOM

Figure 1. Spectral derivatives suppress spurious correlations in
covariance NMR spectra. The ∗ and X indicate true and erroneous
correlations, respectively: (a,b) ⎯→ca at an index H(i) = a (see eqs 2 and
3); (c) ⎯→ca−1* at an index H(i+1) = c*; (d) ⎯→ca−1

X for an erroneous
correlation at H(i+1) = cX. (e,f) Element-wise products of ⎯→ca with ⎯→ca−1*
(v*⃗) and ⎯→ca with ⎯→ca−1

X (v ⃗X). (g−j) Derivatives (⎯→ca′) of ⎯→ca vectors in a−
d, respectively. (k,l) Element-wise products of ⎯→ca′ with ⎯→ca−1′* (v ⃗(′)*) and
⎯→ca′ with ⎯→ca−1′X (v ⃗(′)X). v ⃗(′)* and v ⃗(′)X denote the products of the
derivatives and not the derivatives of the products. (m) H(i+1) trace
in HHs at index H(i) = a, without derivatives. (n) Corresponding H(i
+1) trace with derivatives.
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procedure applied to Cα in the previous paragraph can also be
applied to HN(CA)CO and HNCO to produce HNHsco
spectra (Figure 3c,d). Because HNHsca and HNHsco provide
sequential correlations along a common proton dimension,
placing the spectra side-by-side (or overlaying them) readily
identifies common sequential correlations. Alternatively, the
sequential information contained in each COSCOM spectrum
can be combined via element-wise multiplication, permitting
further reduction in artifacts due to the destructive interference
of erroneous correlations. Indeed, Figure 3e,f shows that
multiplication of HNHsca and HNHsco to produce HNHscaco
removes a majority of the erroneous correlations that resulted
from accidental degeneracies in Cα and CO carbon frequencies.

Without using spectral derivatives, three sequential proton
candidates remain in HNHscaco (Figure 3e). However, when
taking the derivative prior to covariance, only a single
correlation remains. The other two correlations are severely
damped, since they originate from partial overlap in 13C signals,
and the true sequential correlation is identified (Figure 3f). In
the end, rather than analyzing four carbon dimensions in four
3D spectra, the sequential correlation is unambiguously
identified with the single 1H trace of HNHscaco of Figure 3f.
Optimal COSCOMs are obtained when all dimensions of the

original spectra are probed. So far, we have investigated the
quality of covariance maps in a situation that exacerbates the
effect of spectral crowding, namely, by using a 2D projection of
the 3D-HN(CO)CA. However, in practice, two 3D spectra are
available, and the sequential assignment procedure can be
reformulated as “find which (H,N) correlations in HN(CO)CA
possess Cα frequencies matching those observed for (H,N)
correlations in HNCA.” This sentence translates to:
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The resultant 4D spectrum is the HNHsNsca featuring
correlations (H(i),N(i),H(i+1),N(i+1)). The index e spans the
HN(CO)CA nitrogen dimension. However, the computational
implementation of eq 4 is problematic, as the 4D spectrum
rapidly exceeds memory capacities. Instead, all four 3D
projections of the 4D spectrum are calculated on the fly.
Covariance spectra originating from different carbon correla-
tions are also multiplied on the fly, resulting in computational
time and disk-space savings. In the end, our MATLAB16

processing script (available upon request) produces four 3D
COSCOMs: HNHscaco providing (H(i),N(i),H(i+1)),
HNNscaco providing (H(i),N(i),N(i+1)), HsNsHcaco providing
(H(i),N(i),H(i−1)), and HsNsNcaco providing (H(i),N(i),N-
(i−1)). These COSCOMs are renamed HNHsuc, HNNsuc,
HNHpre, and HNNpre, respectively. Tests performed on the
well-known protein ubiquitin demonstrate successful suppres-
sion of false correlations, and only two pairs of residues (out of
70) could not be linked with COSCOMs (Supporting
Information Figure S1). The H, Cα, and CO chemical shifts
of G47 and G75 are nearly degenerate. These residues are
nevertheless assigned by identifying correlations for surround-
ing residues (e.g., A46 identifies G47). Alternatively, the correct
assignment is also revealed by close inspection of the original
3D spectra. The latter observation highlights that COSCOMs
provide a means to rapidly assign residues and overcome the
limitations of peak picking, but it is nevertheless a method to
supplement rather than supplant conventional protocols.
The advantages of sequential covariance spectra over

traditional methods are exemplified with a 37 kDa monomeric
protein. We used COSCOMs with a 37 kDa protein for which
backbone assignment had been in progress for about 6 months
with conventional methods. Figure 4 showcases both the ease
of use of COSCOMs and their ability to overcome the
limitations of peak picking. Four COSCOMs were used to scan
the unassigned HN-TROSY of the protein. The backbone
signals of L189−Q196 were simultaneously picked and
assigned within only 30 min (Figure S2). HNCA, HN(CA)CO,
and HN(CA)CB were used for residue type assignment. In
contrast, only A194, G195, and Q196 had been assigned with

Figure 2. Differentiating between true sequential correlations (*) and
erroneous correlations due to partially overlapping signals (X): (a) ⎯→ca
(Cα 1D trace) from HNCA at H(i) = 7.558 ppm and N(i) = 120.023
ppm; (b) ⎯→ca−1* from 2D-H(NCO)CA at H(i+1) = 7.608 ppm; (c) ⎯→ca−1

X

from 2D-H(NCO)CA at H(i+1) = 8.602 ppm. (d) Element-wise
product of ⎯→ca with ⎯→ca−1* (v*⃗). (e) Element-wise product of ⎯→ca with ⎯→ca−1

X

(v ⃗X). (f−h) Derivatives of ⎯→ca vectors in a−c, respectively. (i,j) Element-
wise products of ⎯→ca′ with ⎯→ca−1′* (v ⃗(′)*) and ⎯→ca′ with ⎯→ca−1′X (v ⃗(′)X),
respectively. The normalized sum of the elements of v*⃗, v ⃗(′)*, v ⃗X, and
v ⃗(′)X lead to correlations that are highlighted by the symbols * and X in
Figure 3a,b. Data collected with the 37 kDa EA domain.

Figure 3. Identification of unique proton sequential correlations when
using spectral derivatives and when multiplying COSCOMs. (a,b)
HNHsca, (c,d) HNHsco, and (e,f) HNHscaco obtained by multiplying
a and c and b and d, respectively. (a,c,e) Correlations obtained without
derivatives in the carbon dimensions. (b,d,f) Correlations obtained
with derivatives. Covariance was performed with the MATLAB16

covariance NMR toolbox.6 The amplitudes of signals labeled * are Σv*⃗
and Σv ⃗(′)* in a and b, respectively, while those labeled X are Σv ⃗X and
Σv ⃗(′)*X, with the vectors v ⃗ as defined in Figure 2. The ∗ denotes the
true correlation. Data collected with the 37 kDa EA domain.
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strip matching. Several mistakes had impeded proper assign-
ment of this segment of residues. First, the signals of A190 were
erroneously assigned to A194 as all 13C sequential correlations
in G195 (Cα, Cβ, and CO) had frequencies matching those of
A190. Second, A194 had not been identified by strip matching
because its Cα had been mis-assigned. Finally, the signals of
L189 had not been picked. When scanning G195 with HNHpre
and HNNpre (Figure 4a top and left), A194 (labeled with a red
“+” in Figure 4a) and A190 (unlabeled) were identified.
NOESY-HN-TROSY identified which of the signals of A190
and A194 belonged to the predecessor of G195. Sequential
residues were rapidly identified with COSCOMs down to
A190, previously erroneously assigned to A194. Weak
correlations in HNHpre and HNNpre identified a new (H,N)
correlation for the predecessor of A190, L189. L189 had
previously escaped peak picking because its weak (H,N)
correlation overlaps partially with that of a very intense signal.
The low amplitudes of L189 signals prevented further
assignment. The complete sequence of residues L189−Q196
was assigned in a matter of minutes by simple scanning of HN-
TROSY with COSCOMs, whereas strip matching only
provided the correct assignment for two of these residues.
The comparison between assignments provided by COSCOMs
and those obtained with traditional methods was carried out for
2 weeks. Another three mistakes were corrected, and eight new
links were found. In the end, 70% of the backbone resonances
were assigned. Absence of correlations in COSCOMs (as in
L189) demonstrates that signals are missing in the original
spectra and more sensitive data must be recorded to complete
assignment. Without COSCOMs, significant time would be
wasted seeking signals of sequential residues that may not exist.
In conclusion, we have presented a method that enables

sequential assignment of NMR resonances upon simple
inspection of correlation maps bypassing preliminary peak
picking and associated limitations. We have shown that using
spectral derivatives in the dimension to which covariance is
applied either removes artifacts or clearly identifies them by a
change of sign. Further improvements were obtained by
multiplying covariance spectra that convey the same sequential
information. The resulting sequential correlations allow rapid
and reliable assignment of backbone resonances. Human error

is minimized since the information provided by the original 3D
spectra is combined mathematically before any user interaction
is required. The method does not require data other than those
traditionally used for assignment, and it is readily applicable to
projects that may have stalled due to errors in peak picking. In
the end, we have developed a tool that should greatly facilitate
resonance assignment, which is often a bottleneck in NMR
investigations of biological macromolecules. As such, CO-
SCOMs should be an asset in widening the range of proteins
for which NMR can be used.
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Figure 4. Scanning HN-TROSY with COSCOMs overcomes
shortfalls of strip matching. (a) HN-TROSY of the 37 kDa EA with
strips of HNHpre (left) and HNNpre (top) at the (H,N) coordinates of
G195 (cyan), as well as strips of HNHsuc (bottom) and HNNsuc
(right) at the coordinates of A194 (green). (b) Strip matching for the
predecessor of G195. A194 was initially missing; its Cα was
erroneously picked at the position indicated by the arrow. Correlations
to A190 and A234 (very weak) are seen in HNHpre and HNNpre
(unlabeled).
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